Calcite surface structure and reactivity: molecular dynamics simulations and macroscopic surface modelling of the calcite-water interface.

نویسندگان

  • M Wolthers
  • D Di Tommaso
  • Z Du
  • N H de Leeuw
چکیده

Calcite-water interactions are important not only in carbon sequestration and the global carbon cycle, but also in contaminant behaviour in calcite-bearing host rock and in many industrial applications. Here we quantify the effect of variations in surface structure on calcite surface reactivity. Firstly, we employ classical Molecular Dynamics simulations of calcite surfaces containing an etch pit and a growth terrace, to show that the local environment in water around structurally different surface sites is distinct. In addition to observing the expected formation of more calcium-water interactions and hydrogen-bonds at lower-coordinated sites, we also observed subtle differences in hydrogen bonding around acute versus obtuse edges and corners. We subsequently used this information to refine the protonation constants for the calcite surface sites, according to the Charge Distribution MUltiSite Ion Complexation (CD-MUSIC) approach. The subtle differences in hydrogen bonding translate into markedly different charging behaviour versus pH, in particular for acute versus obtuse corner sites. The results show quantitatively that calcite surface reactivity is directly related to surface topography. The information obtained in this study is not only crucial for the improvement of existing macroscopic surface models of the reactivity of calcite towards contaminants, but also improves our atomic-level understanding of mineral-water interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visualising the molecular alteration of the calcite (104) - water interface by sodium nitrate.

The reactivity of calcite, one of the most abundant minerals in the earth's crust, is determined by the molecular details of its interface with the contacting solution. Recently, it has been found that trace concentrations of NaNO3 severely affect calcite's (104) surface and its reactivity. Here we combine molecular dynamics (MD) simulations, X-ray reflectivity (XR) and in situ atomic force mic...

متن کامل

Growth modification of seeded calcite using carboxylic acids: atomistic simulations.

Molecular dynamics simulations were used to investigate possible explanations for experimentally observed differences in the growth modification of calcite particles by two organic additives, polyacrylic acid (PAA) and polyaspartic acid (p-ASP). The more rigid backbone of p-ASP was found to inhibit the formation of stable complexes with counter-ions in solution, resulting in a higher availabili...

متن کامل

Modelling how incorporation of divalent cations affects calcite wettability–implications for biomineralisation and oil recovery

Using density functional theory and geochemical speciation modelling, we predicted how solid-fluid interfacial energy is changed, when divalent cations substitute into a calcite surface. The effect on wettability can be dramatic. Trace metal uptake can impact organic compound adsorption, with effects for example, on the ability of organisms to control crystal growth and our ability to predict t...

متن کامل

Electrolyte layering at the calcite(104)-water interface indicated by Rb(+)- and Se(VI) K-edge resonant interface diffraction.

Calcite-water interface reactions are of major importance in various environmental settings as well as in industrial applications. Here we present resonant interface diffraction results on the calcite(104)-aqueous solution interface, measured in solutions containing either 10 mmol L(-1) RbCl or 0.5 mmol L(-1) Se(VI). Results indicate that Rb(+) ions enter the surface adsorbed water layers and a...

متن کامل

Surface Structure and Morphology of Calcium Carbonate Polymorphs Calcite, Aragonite, and Vaterite: An Atomistic Approach

Atomistic simulation techniques have been employed to investigate the effect of molecular adsorption of water on the low-index surfaces of calcite, aragonite, and vaterite. Calculated surface and hydration energies agree with experiment and previous calculations where available. Known experimental surface features are reproduced, i.e., 1 × 1 symmetry and structural features of the calcite {101h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 43  شماره 

صفحات  -

تاریخ انتشار 2012